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An incompressible unsteady viscous two-dimensional finite volume Navier–Stokes solver is developed
using ‘‘consistent flux reconstruction” technique on a collocated unstructured mesh comprising of trian-
gular cells. In this solver, the full Navier–Stokes equations have been solved numerically in the physical
plane itself without using any transformation to the computational plane. The cell face centre velocities
are reconstructed explicitly by solving the momentum equations on flux reconstruction control volumes
defined judiciously around the respective cell face centres. This is followed by solution of the cell centre
pressure field using a discrete Poisson equation developed from the reconstructed velocities and updating
the cell centre velocities by using an explicit scheme. In the present investigation, the solver has been
applied to unconfined flow past a single cylinder, two cylinders and three cylinders for Reynolds number
(Re) = 100 and 200. To validate the numerical code the present results for single and two cylinder
arrangements were compared with results available from literature and found to be agreeing well. For
the two and three cylinder configurations flow has been computed for various gaps between cylinders
and for both side-by-side and tandem arrangements. Different wake patterns like in-phase and anti-
phase synchronized wake patterns, flip-flopping, deflected wake patterns and steady wake patterns are
observed depending on the Reynolds number and the gap spacing.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction the shed vortices, shear layers and Karman vortex streets appears
Study of unsteady viscous flow past single or array of circular
cylinders is challenging because of its inherent complexity. De-
tailed study of such flow field is worthwhile because it finds
numerous real-life and industrial applications. In many areas of
engineering, circular cylinders form the basic component of struc-
tures and machinery for example, heat exchange tubes, cooling
systems for nuclear power plants, offshore structures, cooling tow-
ers, transmission cables, etc. These structures are exposed to either
air or water flow, and therefore they experience flow-induced
vibration, which could lead to structural failure under severe con-
ditions. To avoid these situations and to have better structural de-
signs, it is necessary to understand the details of fluid–structure
interactions. Another aspect of this problem is the enhanced con-
vective heat transfer to or from the cylinder surface due to the flow
unsteadiness and interference of neighbouring cylinders in appli-
cations where there is significant temperature difference between
the fluid and the cylinder surface.

The difficulty in predicting flow around multi-cylinders is in-
creased when two or more of these cylinders are placed in proxim-
ity to each other. This is because the dynamic interaction between
ll rights reserved.

: +91 3222 255303.
).
in the wake of the cylinders. Consequently, the wake behaves quite
differently from that of an isolated single circular cylinder. The ex-
act form of the interaction is highly dependent on the Reynolds
number of the flow and on the arrangement of the cylinders. The
geometrical configuration of two or more circular cylinders can
be categorized in general into side-by-side, tandem and staggered
arrangements with respect to the direction of the free-stream flow.
These configurations have been studied experimentally and
numerically by several researchers in the past.

Finite volume method with unstructured grid is most suitable
for handling complex flow fields including flow field around multi-
ple cylinders. Usually some suitable cell face centre flux recon-
struction procedure is devised which incorporates the effect of
neighbouring cell centre velocities and pressures in a more consis-
tent manner. This eliminates the numerical instabilities in course
of calculation. Several such procedures have been proposed by
researchers after use of collocated finite volume approach gained
popularity in the recent decades. Rhie and Chow (1983), Choi
et al. (1993), Deng et al. (1994), etc., are some of the pioneering
works in this area. Roy and Bandyopadhyay (2006) developed a
technique which uses explicit calculation for both cell face centre
flux reconstruction and cell centre momentum equation updating,
which has eliminated the tedious matrix inversion procedures pro-
posed in many former schemes.

http://dx.doi.org/10.1016/j.ijheatfluidflow.2010.01.007
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Recently, there has been significant progress in the area of
incompressible flow calculations with unstructured finite volume
method. Many research works have been reported on flow past sin-
gle and two cylinders. The flows around two circular cylinders in
side-by-side and tandem arrangements were studied by many
researchers (Slaouti and Stansby, 1992; Chang and Song, 1990;
Stansby and Slaouti, 1981; Mittal et al., 1997; Farrant et al., 2001).
They mainly focused on the variation of force coefficients for the
two cylinders as well as the symmetric and asymmetric wake pat-
terns developed in the downstream region of the cylinders. Jester
and Kallinderis (2003) numerically investigated incompressible
flow past a pair of cylinders arranged in tandem, side-by-side and
staggered fashion at Re = 80 and 1000. They also experimentally ob-
served flow physics such as hysteresis effects and bistable biased gas
flow in tandem arrangements. Kang (2003) numerically investi-
gated two-dimensional flow over two circular cylinders in a side-
by-side arrangement at low Reynolds numbers using the immersed
boundary (IB) method. A total of six kinds of wake patterns were ob-
served from his simulations. He reported that the characteristics of
flow significantly depend both on the Reynolds number and gap
spacing, with the latter much stronger than the former. Mizusima
and Ino (2008) investigated the stability and transition of flow past
a pair of circular cylinders in a side-by-side arrangement by numer-
ical simulation and linear stability analyses. They reported various
flow patterns around the cylinders due to instability of the steady
symmetric flow that is realized at small Reynolds number. Liu
et al. (2007) also numerically investigated the flow past two side-
by-side identical circular cylinders with the unstructured spectral
element method. They observed a total of nine kinds of wake pat-
terns for various gap spacing between the cylinders and the Rey-
nolds number. Silva et al. (2007) presented a two-dimensional
numerical solution of flows around different bluff bodies at
Re = 100 and 200 using the IB method. Simulations were carried
out for two circular cylinders of different diameter in tandem, two
cylinders of the same diameter in tandem and in side-by-side
arrangements. The configurations of seven cylinders in a V-arrange-
ment are also simulated. They applied the IB method mainly to focus
on flow dynamics and patterns. Meneghini et al. (2001) investigated
the shedding of vortices and flow interference between two circular
cylinders in tandem and side-by-side arrangements by using a frac-
tional step method. The simulations were performed for a Reynolds
number range varying from 100 to 200 and the flow was solved
using finite element method. They observed that in tandem arrange-
ment, the mean value of drag coefficient of the downstream cylinder
changes from negative to positive value when the gap between two
cylinder centres is greater than three times of the cylinder diameter.

In the present investigation the numerical method proposed
originally by Roy and Bandyopadhyay (2006) to solve incompress-
ible Navier–Stokes equations using a collocated structured grid has
been extended and applied on an unstructured collocated triangu-
lar finite volume grid. A fully explicit scheme is adopted for the cal-
culation of both cell face velocities and flow variables at the cell
centres. For calculation of cell face velocities ‘‘consistent flux recon-
struction” (CFR) technique has been formulated on unstructured
grid which is based on solving the momentum equations at each
cell face explicitly. The present CFR unstructured grid solver would
be called as ‘CFRUNS’. The flux reconstruction cell on the face of the
control volume is placed centrally between the two cells which
share that face. The reconstruction volumes are chosen judiciously
so that computational effort is still reduced as compared to the ori-
ginal method. A discrete pressure-Poisson equation is obtained by
substituting the reconstructed cell face velocity expressions in the
discrete continuity equation. The pressure-Poisson equation is
solved iteratively using Gauss–Siedel method. The reconstructed
cell face flux is substituted in both continuity and momentum
equations. For updating the flow variables at the cell centres, the
momentum equations are solved in an explicit manner in contrast
to implicit scheme of Deng et al. (1994). In this paper, numerical re-
sults are reported for the flow past two and three cylinders in side-
by-side arrangement and three cylinders in tandem arrangement at
Re = 100 and 200. For each arrangement, suitable gap between the
cylinders is maintained. It is a well known fact that the wake behind
two cylinders is highly influenced by the gap between the cylinders
and there exists a so-called critical gap, which is used to classify the
flow patterns behind the cylinders into several categories (Ding
et al., 2007). Based on experimental observation, a range of flow re-
gimes characterized by a critical gap has been found by Williamson
(1985) and by Zdravkovich (1977). Williamson (1985) found three
flow patterns for the side-by-side arrangement, i.e. T < 2.2D,
2.2D < T < 5D, T > 5D, where T represents the transverse gap be-
tween the two cylinders and D the diameter of the cylinder. Zdrav-
kovich (1977) reported three flow regimes for cylinders placed in
tandem: L < 1.2–1.8D, 1.2–1.8D < L < 3.4–3.8D and L > 4D, where L
represents the longitudinal gap between the two cylinders. As sug-
gested by Zdravkovich (1977), the value of the critical gap depends
on the Reynolds number and may vary within a certain range. In the
present study, numerical simulations are performed over two cylin-
ders with transverse gaps of 1.5D and 3D in side-by-side arrange-
ment. The two-cylinder flow bears similarity to flow over more-
than-two circular cylinders in many aspects such as synchroniza-
tion and merging of wakes, deflection and flip-flopping of the gap
flows, and narrow and wide wake structures. However, the two-cyl-
inder flow may not be representative of flows over multiple bluff
bodies because both the flows exhibit quite disparate behaviours
as were explained in details by Sumner et al. (1999) and Zhang
and Zhou (2001). To our best knowledge, not much attention has
been paid till date to flow studies over more-than-two cylinders.
Very few researchers have done experiments on multi-cylinders
(more-than-two cylinders). Kang (2004) has reported detailed
numerical results of three side-by-side circular cylinders. But
hardly any numerical study has been so far performed on the flow
past three cylinders in tandem. Therefore, numerical simulations
are also performed over three circular cylinders in side-by-side
and tandem arrangements with transverse and longitudinal gaps
of 2D and 5D respectively at Re = 100 and 200.

In order to get better understanding of the wake interference
around multiple cylinders, the flow past a single cylinder is also
simulated and that solution is taken as a reference for analyzing
the interaction effect for flow past multi-cylinders. The results ob-
tained for single and two cylinder cases have been validated with
the results from the existing literature.

2. Governing equations

The equations governing incompressible viscous fluid flow in
two-dimensions are the Continuity equation and the two compo-
nents of Momentum equation. In absence of body forces and heat
transfer, these equations can be expressed in the conservative non-
dimensional primitive variable form as follows:

Continuity equation:
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where the velocity components u and v are in the x and y-directions
respectively, p is ratio of pressure and density, Re is the Reynolds
number and t is the non-dimensional time.

In the present calculations, free-stream values for pressure and
velocity are assigned as the initial values to each triangular cell in
the domain. This physically means that the body is suddenly intro-
duced into a uniform free-stream flow. The inlet, outlet, top and
bottom boundaries of the rectangular domain are kept far away
from the body surface. At all the outer boundaries free-stream
Dirichlet boundary condition is applied. On the body surface no-
slip condition is applied.

3. Unstructured grid based finite volume discretization of
governing equations on triangular cells

To obtain a numerical solution, the governing flow equations
are discretized by a finite volume technique based on the integral
form of the equations to be solved. The physical region, in which
the equations are solved, is divided into elementary triangular cells
within which the integration is performed. Only the coordinates of
the corners of the cells are necessary. In the present investigation
unstructured triangular grid has been generated using GAMBIT
6.2.1� software and used as input to the solver.

For any arbitrary triangular cell as shown in Fig. 1a, Eqs. (1),
(2a), and (2b) can be written in integral form as:

Continuity equation:
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Fig. 1. Grid arrangement (a) Main control volume and (b) control volumes for calculatio
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where X is any two-dimensional flow domain over which the inte-
gration is performed.

Applying Green’s theorem to Eqs. (3), (4a), and (4b) for any cell
‘P’ (Fig. 1) yields,

Continuity equation:
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Momentum equations:
Unsteady term:
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n of cell face velocities at 1, 2 and 3 faces for triangular grid arrangement.



nal of Heat and Fluid Flow 31 (2010) 154–171 157
Convective terms:
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Pressure terms:
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Diffusive terms:
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where u1, v1, u2, v2, u3 and v3 are the cell face-centre velocities on
three respective faces of a triangular cell, / is the convective flux
term and is equal to u and v along x- and y-directions respectively
and 1

Re� ð
@u
@xÞ and 1

Re� ð
@u
@yÞ are the diffusive fluxes. ‘C’ is the contour

of the cell ‘P’ and O(|r12|3, . . .) is the Newton–Cotes integration error.
The values of velocity derivatives are obtained by using Taylor ser-
ies expansion about the cell face centre points. For example, the
velocity derivatives on the face ‘1’ of the cell ‘P’ can be expressed as:
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D is the spacing operator, e.g. Dxab = xb � xa.
In Eq. (6a), the transient term is approximated using the lumped

mass approach. In this equation, the superscript of / stands for the
particular time step, namely nth or (n + 1)th. Dt is the time inter-
val. aP represents the area of the cell P. The value of the variable
at the cell centre, say /P, is used as the representative value for
the entire cell for evaluating the transient term. The explicit for-
ward Euler method has been used for the discretizing the time
derivative which is first order accurate in time. Since very small
time steps have been used for all calculations, this does not com-
promise the time accuracy to a significant extent.
4. Application of consistent flux reconstruction scheme on
unstructured grid

Based on the above finite volume discretization of the govern-
ing equations, an explicit two-dimensional solver has been devel-
oped. The solver makes use of collocated grid arrangement,
where the flow variables u, v and p share the same location at
the centre of the cells. For the calculation of the convective and
pressure fluxes through the cell faces, the unknown values (i.e.
u1, u2, u3, v1, v2, v3, p1, p2 and p3) at the centre of the cell faces need
to be evaluated.

The cell face-centre velocities are obtained by using a CFR
scheme based on triangular cells. The present approach involves
the solution of the x and y components of momentum equations
at the centre of the faces of the each cell. This provides the solu-
tion for the required cell face-centre velocities u1, v1, u2, v2, u3 and
v3 for flux calculation. These values are then substituted into the
discrete continuity equation to obtain the discrete Poisson equa-
tion for pressure. In order to maintain the accuracy of the finite
volume discretization, the cell face velocities are approximated
by a second-order accurate closure method. The cell face-centre
pressures are obtained by linearly interpolating the cell centre
pressure values calculated by solving the pressure-Poisson
equation.

When the cell face velocities are obtained by linear interpola-
tion, the cell face velocity e.g. u1, on the face ‘1’, comes as a function
of the cell centre values of the u-velocity component of the con-
cerned cell and its neighbours, but is independent of the corre-
sponding v-velocity component and pressure. Although upwind
interpolation schemes can be used to circumvent the numerical
instability problems, spurious pressure modes exist when such lin-
ear interpolation formulae are implemented on collocated grids.
One of the most effective means to overcome this difficulty is to
use a physically consistent flux reconstruction approach by which
the cell face velocities are expressed not only in terms of the
dependent variable u, in this case, but also other physical quanti-
ties v and p.

In the present solver, a fully explicit scheme is adopted for the
reconstruction of cell face velocities as well as for updating the
flow variables at the cell centres. A 10-point stencil is used for both
pressure and velocity calculations. For calculating the viscous
fluxes on the face ‘1’ (flux reconstruction cell centered about ‘1’,
comprising of cells P and C, Fig. 1), the values of velocities at points
‘a’, ‘g’, ‘b’ and ‘c’ are necessary. For updating the flow variables at
the cell centres, the momentum equations are solved in an explicit
manner. The layout of the flux reconstruction cells used in the
present solver is different from that of Roy and Bandyopadhyay
(2006). The present flux reconstruction cells are chosen in such a
manner that the integration points for the main control volume
and the reconstruction control volume coincide; therefore it re-
duces the computational effort.

The closures of the cell face velocities u1, v1, u2, v2, u3 and v3

are obtained from the discretized u and v components of the
momentum equations for reconstruction control volumes defined
around the points ‘1’, ‘2’ and ‘3’ respectively are shown in
Fig. 1b. The finite-volume schemes used at these points are sim-
ilar to that used at point ‘P’. The discretizations of the various
terms in the x-component of momentum equation are given as
follows:
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Pressure term:
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In Eq. (8a), the ‘lumped mass’ approach has been applied to the flux
reconstruction cell on the face ‘1’ of the cell P. The area of the recon-
struction cell is the sum of the areas of cells P and C. The value of the
variable at the reconstruction cell centre, namely u1, is used as the
representative value for the entire reconstruction cell for evaluating
the transient term. X1 is the domain of the ‘1’ cell and C1 is the con-
tour enclosing it. The values of the properties at various nodal points
like a, b, c, etc. are obtained by linear interpolation of neighbouring
cell centre property values. For example, the equation used for eval-
uating the value of the property at node ‘a’ is given as follows:

ua ¼
P

i
uP ½i�
d½i�

� 	
P

i
1

d½i�

� 	 ð9Þ

where /P[i] is the cell centre value of any of the neighbouring cells
of node ‘a’. d[i] is the distance of the neighbouring cell-centre from
node ‘a’. The number of neighbours (i) can vary from node to node.
The first order velocity derivatives (o//ox) and (o//oy) at points 2, 3,
11 and 12 are obtained using Taylor series expansion as explained
in Eqs. (7a) and (7b). The velocity derivatives at the other integra-
tion points and on other faces of cell ‘P’ (2 and 3) are calculated
using similar formulae. The closure interpolation formulae for u1

can be derived from the substitution of Eqs. (8a), (8b), (8c), (8d) into
Eq. (4a). The resulting expression for u1 at the (n + 1)th time level is:
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The cell face velocity at nth time level i.e. un
1 is taken as the linear

interpolation of the adjoining cell centre values at that time level.
In a similar manner Eqs. (4a) and (4b) are solved to obtain the flux
closure relationships for v1, u2, v2, u3 and v3 respectively at the
(n + 1)th time level.

At the body boundary cells no velocity reconstruction is neces-
sary on the faces lying on the body surface as no-slip boundary
condition is applied over such faces. For reconstruction on the
other two faces, the calculations are done with due care by enforc-
ing no-slip at all the nodal points which lie on the body boundary.
The values of pressure at all the body boundary points are obtained
from the neighbouring flow field points by applying zero normal
pressure gradient condition. The velocity derivatives on the body
boundary are calculated by assuming a layer of ghost cells below
the body, where properties at each node of a ghost cell which are
not located on the body surface are equal in magnitude but oppo-
site in sign to the corresponding nodal value of the body boundary
cell. At the outer boundary, solutions of the discretized flux recon-
struction equations are obtained on the basis of the free stream
values.

5. The pressure-Poisson equation

The equation for pressure is obtained by substituting the
expressions for unþ1

1 , vnþ1
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continuity equation (Eq. (5)). The following pressure-Poisson equa-
tion is obtained with pressure as unknown:
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ð11Þ

where the coefficients CP, CA, CB, CC, CD, CF, CG, CI, CJ and CL are the
geometrical parameters of the cells and SOURCE is the total source
term comprising of the cell divergence at the nth time level, Dn

i , and
the convective and diffusive fluxes at the cell faces. The term
SOURCE is an explicit function of the nodal variables ui and vi which
include the concerned cell and its nine neighbours as follows:

SOURCE ¼ ð 1
DtÞ �

u1 � Dyab þ u2 � Dybc þ u3 � Dyca

�v1 � Dxab � v2 � Dxbc � v3 � Dxca

� �n

þð Dyab
aPþaC
Þ � ð�UCFLUX1 þ ð 1

ReÞ � UDFLUX1Þ

þð Dybc
aPþaA
Þ � ð�UCFLUX2 þ ð 1

ReÞ � UDFLUX2Þ

þð Dyca
aPþaB
Þ � ð�UCFLUX3 þ ð 1

ReÞ � UDFLUX3Þ

�ð Dxab
aPþaC
Þ � ð�VCFLUX1 þ ð 1

ReÞ � VDFLUX1Þ

�ð Dxbc
aPþaA
Þ � ð�VCFLUX2 þ ð 1

ReÞ � VDFLUX2Þ
�ð Dxca

aPþaB
Þ � ð�VCFLUX3 þ ð 1

ReÞ � VDFLUX3Þ

ð12Þ

where expressions for UCFLUX1 and UDFLUX1 are provided in Eqs.
(8b) and (8d) respectively. The expressions for the remaining flux
terms are similarly obtained from the other cell face centres.

Eq. (11) is used directly as the pressure equation to determine
the pressure field. For the cells near the body boundary, the expres-
sion for the pressure equation is obtained by applying the zero
velocity boundary condition in the discretized continuity equation.
Zero normal pressure gradient across the body boundary is applied
in Eq. (11). Pressure on the body boundary is obtained by using the
above Neumann boundary condition and special care is taken to
satisfy the compatibility condition (Abdallah, 1987a,b) in the dis-
cretized pressure-Poisson equation for such cells. Satisfaction of
the compatibility condition ensures that there is zero net source
term when the discretized equations over the entire computational
domain are considered. Dirichlet boundary condition of free
stream values has been applied in the outer boundary of the flow
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domain. Gauss–Siedel method has been used for the iterative solu-
tion of the pressure-Poisson equation. Once the pressure-Poisson
equation is solved, the cell centre pressure values are available.
The cell face-centre pressures are obtained by linear interpolation
of adjacent cell centre values. For example, cell face-centre pres-
sure on face ‘1’ is obtained as:

p1 ¼
pC � aP þ pP � aC

aP þ aC
ð13Þ

The discretized cell centre momentum equations are solved by
substituting the values of velocity derivatives at cell face-centres,
interpolated cell face-centre pressures, and the values of the cell
face-centre velocities obtained by the CFR approach as formulated
in the present investigation. From these equations, the velocities
at the cell centres are updated explicitly.

6. Geometrical description of the flow domain

The geometrical description of two and three cylinder configu-
ration with cylinders of equal diameter D is defined by two param-
eters: the transverse gap T and the longitudinal gap L based on
centre-to-centre distances as indicated in Fig. 2. The top and bot-
tom boundaries are kept at a transverse distance of 15 times of
the cylinder diameter from the central cylinder so that blockage ra-
tio for different multi-cylinder cases is always less than 10%. The
in-flow boundary is kept at a distance of 10 times of the cylinder
diameter from the centre of the front cylinder. The out-flow
boundary is kept at a distance of 25 times of the cylinder diameter
downstream from the centre of the rear cylinder.

7. Initial condition and boundary conditions

The governing equations for viscous incompressible flow are
mixed parabolic–elliptic in nature. The solution marches forward
in time due to the parabolic behaviour and disturbances may travel
along any direction, upstream or downstream due to the elliptic
behaviour. Therefore initial conditions need to be set at the begin-
ning of the solution and boundary conditions surrounding the do-
main should be specified.

In the beginning of the solution process, uniform free-stream
velocity and pressure field are prescribed in each cell of the flow
domain as given below:

u½i� ¼ u1
v ½i� ¼ v1
p½i� ¼ p1

9>=
>; for all triangular cells in the flow domain ð14Þ
Fig. 2. Problem description.
This physically means that the body is suddenly introduced into
a uniform free-stream flow. Free-stream parameters are indicated
by suffix1. In the present calculations unconfined flow past single
and multiple circular cylinders has been considered. For the rect-
angular flow domain, the inlet, outlet, top boundary and bottom
boundary are kept far away from the body surface. At all the outer
boundaries, free stream Dirichlet boundary condition is applied. On
the body surface, no slip condition is used.

8. Results and discussion

In this study, the unstructured CFR method is applied to simu-
late flows around single, two and three circular cylinders within
the low Reynolds number range, i.e. Re = 100 and 200. For numer-
ical simulation of this flow problem, it is necessary to visualize the
details of the computed flow around the cylinders and in their near
wake region. Therefore, streamlines and vorticity contours are
plotted as the flow visualization aids. Some parameters character-
izing the flow aspects such as lift and drag coefficients and Strouhal
number are also computed and quantitatively compared with the
results of other researchers. The results obtained for single cylinder
were primarily used for validating the present CFRUNS solver. To
analyze and better understand the vortex shedding behaviour
and the interference of vortex streets behind multi-cylinders, the
solution of flow past single cylinder has often been used as a refer-
ence for comparison.

8.1. Flow past a single circular cylinder

Flow past an isolated circular cylinder has attractive features
like vortex shedding behind the cylinder and the periodic variation
of the flow field at moderate Reynolds number. In the present
study, the unsteady flow at Re = 100 and 200 are simulated on a
triangular mesh comprising of 29,464 cells and 14,878 nodes out
of which 160 nodes are on the body surface. The size of the grid
has been decided based on a grid independence study carried out
on four different grids. The difference in the grids is based on the
number of nodes on the cylinder surface. Table 1 gives the details
of the grid independence test carried out at Re = 100. The distribu-
tion of the cells in the domain can be seen in Fig. 3a. The non-
dimensional time step used in the calculation is 0.001. At every
time level, the convergence criteria for pressure-Poisson equation
is set in a manner that the residual is less than 10�6. The initial
convergence pattern of the numerical scheme for flow past a single
circular cylinder at Re = 100 is shown in Fig. 3b. The convergence
characteristics of the scheme was tested for several other problems
and found to be satisfactory. To obtain the characteristics of lift and
drag coefficients, simulation was performed up to 400 non-dimen-
sional time.

Based on the variation of the values of lift coefficients, drag
coefficients and Strouhal number, Grid 3 has been chosen for the
flow calculations. For multi-cylinder simulations also same num-
ber of nodes is chosen on the body surface for each cylinder.

Fig. 3c and d shows the vorticity contours and streamlines past
a single cylinder for Re = 100 and 200 respectively at instantaneous
time t = 400. The Karman vortex street is well established in both
Table 1
Grid independence test carried out at Re = 100.

Number of nodes on
the body

Drag coefficient
(CD)

Lift coefficient
(CL)

Strouhal
number (St)

80 (Grid 1) 1.112 ± 0.021 ±0.181 0.168
120 (Grid 2) 1.185 ± 0.015 ±0.21 0.164
160 (Grid 3) 1.352 ± 0.010 ±0.278 0.161
200 (Grid 4) 1.381 ± 0.010 ±0.281 0.161



Fig. 3. (a) Close-up view of the triangular unstructured mesh around a single circular cylinder, (b) Initial convergence pattern of the numerical scheme for flow past a single
circular cylinder at Re = 100, (c) Vorticity contours and streamlines of flow past single circular cylinder at Re = 100, (d) Vorticity contours and streamlines of flow past single
circular cylinder at Re = 200, (e) Lift and drag coefficients of flow past single circular cylinder at Re = 100, (f) Lift and drag coefficients of flow past single circular cylinder at
Re = 200.
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the cases. Fig. 3e and f shows the time dependent behaviour of the
lift and drag coefficients on the surface of the cylinder at Re = 100
and 200. The clear periodicity illustrated in lift and drag coeffi-
cients implies the periodic vortex shedding from the rear surface
of the cylinder. Table 2 lists the mean value and amplitude of drag
and lift coefficients and Strouhal number of present results as well
as numerical results of Meneghini et al. (2001), Ding et al. (2007),
Braza et al. (1986) and Gresho et al. (1980) and the experimental
results of Tritton (1959) and Wiesenberger (1921). It is observed
that our results agree reasonably well with those reported by other
researchers. However, it has been observed that our numerical val-
ues of drag coefficient are generally higher than the experimental
values of Tritton (1959) and Wiesenberger (1921) but are margin-
ally lower than the numerical results of Meneghini et al. (2001),
Ding et al. (2007), Braza et al. (1986) and Gresho et al. (1980). Also,
the Strouhal number, which is the dimensionless frequency of vor-
tex shedding, obtained by the present numerical model lies in-be-
tween the experimental values of Friehe (1980) and Roshko (1954)
and the other numerical results (Meneghini et al., 2001; Ding et al.,
2007; Gresho et al., 1980). The variation of drag coefficient and



Table 2
Values of flow parameters for flow field around single circular cylinder at Re = 100 and 200.

Parameters Drag coefficient (CD) Lift coefficient (CL) Strouhal number (St)

Reynolds number Re = 100 Re = 200 Re = 100 Re = 200 Re = 100 Re = 200

Meneghini et al. (2001) 1.370 ± 0.010 1.30 ± 0.05 – – 0.165 0.196
Ding et al. (2007) 1.356 ± 0.010 1.348 ± 0.05 ±0.287 ±0.659 0.166 0.196
Braza et al. (1986) 1.364 ± 0.015 1.40 ± 0.05 ±0.25 ±0.75 0.160 0.200
Tritton (1959) 1.320 ± 0.010 – – – 0.160 –
Wiesenberger (1921) 1.326 ± 0.010 – – – 0.1608 –
Gresho et al. (1980) 1.816 ± 0.010 – – – 0.18 –
Present result 1.352 ± 0.010 1.32 ± 0.05 ±0.278 ±0.602 0.161 0.192

Fig. 4. (a) Close-up view of the triangular mesh around a pair of circular cylinders with T = 1.5D, (b) Close-up view of the triangular mesh around a pair of circular cylinders
with T = 3D, (c) Vorticity contours and streamlines of flow past a pair of side-by-side circular cylinders (T = 1.5D) at Re = 100, (d) Vorticity contours and streamlines of flow
past a pair of side-by- side circular cylinders (T = 1.5D) at Re = 200, (e) Lift and drag coefficients of flow past a pair of circular cylinders (T = 1.5D) at Re = 100, (f) Lift and drag
coefficients of flow past a pair of circular cylinders (T = 1.5D) at Re = 200.
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Fig. 4 (continued)
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Strouhal number from the experimental values is probably due to
the relatively coarser grid used downstream of the cylinder and the
absence of three-dimensional effects in the present simulation un-
like experiments. The satisfactory performance of the CFRUNS sol-
ver in solving flow past a single circular cylinder provided the
necessary confidence to carry out the study of flow around two
and three circular cylinders.
8.2. Flow past two side-by-side circular cylinders

Flow past two circular cylinders is much more complicated as
compared to that of flow past a single circular cylinder especially
when interference effects are severe. In the present study, the
numerical results obtained for flow field behind two side-by-side
cylinders are highlighted. In the side-by-side arrangement of two
circular cylinders, numerical simulations have been performed
for the cases of T = 1.5D and 3D respectively. Unsteady flow at
Re = 100 and 200 are simulated on a triangular mesh with 40,972
cells and 20,711 nodes for T = 1.5D case and with 31,581 cells
and 16,016 nodes for T = 3D case respectively. The distribution of
the cells in the domain can be seen in Fig. 4a and b respectively.
The non-dimensional time step used for the calculation is 0.0005.
At every time level, the convergence criteria for pressure-Poisson
equation is set by maximum cell residual 10�6. Note that flow
has been assumed to be two-dimensional at the given Reynolds
numbers for any transverse distance between the cylinders.

Fig. 4c and d presents the vorticity contours and streamlines of
the flow field around two cylinders for T = 1.5D, Re = 100 and 200
respectively at instantaneous non-dimensional time t = 150. It is
observed that the flow pattern is bistable with narrow and wide
wakes behind the cylinders. This result agrees well with the exper-
imental result of Zdravkovich (1977) who observed biased flow pat-
tern when the transverse gap between the cylinders is within the
critical gap (1.1D < T < 2.2D). Fig. 4e and f shows the temporal his-
tories of drag and lift coefficients. From these figures, it can be ob-
served that drag and lift coefficients exhibit irregular variation with
time and the flow is not periodic and is drastically unsteady. Previ-
ous experimental studies of Zhou et al. (2000) and Xu et al. (2003)
have reported that the flow between two cylinder surfaces (gap
flow) is deflected to the side of higher-frequency cylinder and the
cylinder experiences a higher drag than the other. Such relationship
with regard to gap-flow direction and drag coefficient is also dem-
onstrated numerically in the present results. It is shown that both
the cylinders take irregular turns in experiencing the higher drag
coefficient, indicating that the two wakes randomly flip-flop be-
tween two states of gap-flow direction. Thus, a flip-flopping wake
pattern is observed. Due to the deflection of gap flow, one narrow
wake region is formed behind the cylinder towards which the gap
flow deflects and one wide wake region is formed behind the other
cylinder. This type of flip-flopping pattern of the wake is also ob-
served in the numerical simulation of Kang (2003) at the same
transverse gap T = 1.5D. There is no indication of any repeatability
in the lift and drag patterns with respect to time even at the lower
Reynolds number. The results for the two cylinders are indicated by
associating a number along with CL and CD. ‘1’ stands for the lower
cylinder and ‘2’ stands for the upper cylinder.

Fig. 5a and b presents the vorticity contours and streamlines for
the flow field past two cylinders for T = 3D, Re = 100 and 200
respectively at instantaneous non-dimensional time t = 140. Zdrav-
kovich (1977) experimentally observed that when the transverse
gap is larger than 2D, two synchronized Karman vortex streets
are observed for the side-by-side arrangement of the cylinders. In
our present study also vortex streets are clearly developed for this
transverse gap. The time evolution of lift and drag coefficients are
shown in Fig. 5c and d at Re = 100 and 200 respectively. The syn-
chronized variation of lift and drag coefficients with time confirms
the fully periodic behaviour of vortex shedding from the upper and
lower cylinders. According to the time traces, the drag coefficients
for both the cylinders are almost same and the lift coefficients are
in-phase. The drag coefficients are out of phase at Re = 100 and
consequently an in-phase-synchronized wake pattern is formed.
The instantaneous flow field suggests that the vortex shedding
from both cylinders occurs at nearly the same phase, pairs of
like-signed vortices merge, and then some distance downstream
the merging process ceases. This type of wake pattern is very well
comparable with the wake patterns obtained by Kang (2003) at
same transverse gap between the cylinders. On the other hand,
at Re = 200, the drag and lift coefficients for both the cylinders
are in anti-phase and thus, an anti-phase-synchronized wake pat-
tern is observed. Also, the instantaneous flow field suggests that
the flow is symmetric with respect to the centerline (y = 0) all
the way far downstream. Thus, it is observed that the flow Rey-
nolds number and the transverse gap between the cylinders influ-
ence the flow pattern downstream of the cylinders but the later
plays a major role in deciding the wake patterns. It is also observed
that the variation of amplitudes increase with increase in Reynolds
number for lower gaps.

Table 3 mentions the mean value and amplitude of drag and lift
coefficients and the Strouhal number for two cylinders at two dif-
ferent transverse gaps (T = 1.5D and 3D) at Re = 100 and 200. It can
be observed that the mean value of the lift coefficient is positive for
the lower cylinder and negative for the upper cylinder. The values
are larger at smaller gap which indicates that there is a stronger
transverse suction effect when the cylinders are in close proximity.
For the flip-flopping wake pattern at T = 1.5D, the fully developed
flows are not periodic. Consequently, the FFT of the lift coefficients
does not result in any distinctive dominant frequency, rather the
vortex frequencies are irregularly scattered over a broadband fre-
quency range, implying that multiple frequencies are intricately in-
volved. Therefore, the Strouhal number values are not mentioned
in our results for T = 1.5D. Only mean values of drag and lift coef-
ficients obtained by time averaging over a substantial time period
are mentioned for T = 1.5D in Table 3. This would be noticed for
certain cases included in Tables 4–6 also. It can also be observed
that the values of the flow parameters tend towards those of a sin-
gle cylinder as gap increases. It indicates that the flow interference
reduces as the two cylinders are placed further apart.

Tables 4 and 5 present the comparison of present numerical re-
sults with those of Ding et al. (2007). From the comparison, it can
be seen that the lift coefficients and Strouhal numbers are in good
agreement with the available data. The drag coefficient does not
compare very satisfactorily.
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8.3. Flow past three circular cylinders

Flow past three circular cylinders is still more complicated as
compared to flow field past a single cylinder or two cylinders
due to more complex interference effects. Kang (2004) has re-
ported detailed numerical results of three side-by-side circular cyl-
inders. But hardly any numerical study has so far been performed
on the flow past three cylinders in tandem. In the present study,
flow field around three cylinders placed in side-by-side and tan-
dem arrangement are reported. Apparently, this flow is more com-
plicated than the two-cylinder flow; for example, there are two gap
flows that may deflect in various ways, consequently involving
more types of wake patterns as reported by Zhang and Zhou
(2001). In addition the flow is more representative of flows over
multiple bluff bodies of engineering interest. All the flows involv-
ing three circular cylinders considered in the present study are as-
sumed to be two-dimensional and laminar even if they are not
perfectly so at relatively higher Reynolds number and small gap
spacings between the cylinders.

8.3.1. Case I: side-by-side (T = 2D) and tandem (L = 2D) arrangement
In the side-by-side and tandem arrangement of three circular

cylinders, numerical simulations have been performed for the case
Fig. 5. (a) Vorticity contours and streamlines of flow past a pair of side-by-side circular cy
of side-by- side circular cylinders (T = 3D) at Re = 200, (c) Lift and drag coefficients of flow
flow past a pair of circular cylinders (T = 3D) at Re = 200.
of T = 2D and L = 2D respectively. The distribution of cells in the
flow domain is shown in Fig. 6a. In both the cases, the time step
used for the calculation is 0.0005. A triangular mesh with 40,356
cells and 20,453 nodes for T = 2D case and 28,338 cells and
14,447 nodes for L = 2D case have been used respectively.

Fig. 6b and c presents the vorticity contours and streamlines of
flow past three side-by-side cylinders for T = 2D at Re = 100 and
200 respectively at instantaneous non-dimensional time t = 180.
It is observed that since the transverse gap (2D) falls within the
range of intermediate critical gap, bistable flow pattern with nar-
row and wide wakes is formed behind the cylinders. This result
agrees well with the experimental result of Bearmann and Wad-
cock (1973) and Williamson (1985) who observed biased flow pat-
tern when the transverse gap between the cylinders is within the
critical gap (1.1D < T < 2.2D). Fig. 6d and e shows the temporal his-
tories of drag and lift coefficients. From these figures, it can be ob-
served that drag and lift coefficients exhibit irregular variation
with time. It implies that irregular vortex shedding occurs behind
the sets of cylinders. Thus, it is evident that the flow is no longer
periodic and becomes drastically unsteady. This type of flow struc-
ture evolves flip-flopping wake pattern. Kang (2004) had also ob-
served similar wake pattern for similar gap spacing between
cylinders. Moreover, two types of flip-flopping wake patterns are
linders (T = 3D) at Re = 100, (b) Vorticity contours and streamlines of flow past a pair
past a pair of circular cylinders (T = 3D) at Re = 100, (d) Lift and drag coefficients of



Fig. 5 (continued)

Table 3
Values of flow parameters for flow around two side-by-side circular cylinders at Re = 100 and 200.

Parameters Drag coefficient (CD) Lift coefficient (CL) Strouhal number (St)

Reynolds number Re = 100 Re = 200 Re = 100 Re = 200 Re = 100 Re = 200

T = 1.5D Upper Cylinder 1.58 1.68 �0.41 �0.5 – –
Lower Cylinder 1.52 1.60 0.41 0.5 – –

T = 3D Upper Cylinder 1.45 ± 0.05 1.35 ± 0.05 �0.1 ± 0.025 �0.1 ± 0.8 0.181 0.211
Lower Cylinder 1.45 ± 0.05 1.35 ± 0.05 0.1 ± 0.025 0.1 ± 0.8 0.181 0.211

Table 4
Comparison of flow parameter values for two side-by-side circular cylinders at Re = 100.

Parameters Drag coefficient (CD) Lift coefficient (CL) Strouhal number(St)

Results Present result Ding et al. (2007) Present result Ding et al. (2007) Present result Ding et al. (2007)

T = 1.5D Upper Cylinder 1.58 1.53 �0.41 �0.46 – –
Lower Cylinder 1.52 1.51 0.41 0.47 – –

T = 3D Upper Cylinder 1.45 ± 0.05 1.56 ± 0.03 �0.1 ± 0.025 �0.131 ± 0.253 0.181 0.182
Lower Cylinder 1.45 ± 0.05 1.56 ± 0.03 0.1 ± 0.025 0.131 ± 0.253 0.181 0.182

Table 5
Comparison of flow parameter values for two side-by-side circular cylinders at Re = 200.

Parameters Drag coefficient (CD) Lift coefficient (CL) Strouhal number (St)

Results Present result Ding et al. (2007) Present result Ding et al. (2007) Present result Ding et al. (2007)

T = 1.5D Upper Cylinder 1.68 1.54 �0.5 �0.41 – –
Lower Cylinder 1.60 1.52 0.5 0.43 – –

T = 3D Upper Cylinder 1.35 ± 0.05 1.548 ± 0.03 �0.1 ± 0.8 �0.104 ± 0.866 0.211 0.215
Lower Cylinder 1.35 ± 0.05 1.548 ± 0.03 0.1 ± 0.8 0.104 ± 0.866 0.211 0.215
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observed in the gap spacing ranges as suggested by Kang (2004):
one is that the two gap flows run downstream (nearly) parallel
to each other and the other is that the two gap flows run towards
free stream, leading to narrow wakes behind the two outer cylin-
ders and a wide wake behind the central one. In the former pattern
(parallel mode), the drag coefficient for the central cylinder is
much higher than those for the two outer cylinders. In the later
pattern (symmetric mode), the drag coefficient for the central cyl-
inder drops comparable to those for the two others. It has been ob-
served from the vorticity contours in Fig. 6 that the parallel flip-
flopping wake pattern bifurcates to deflected pattern as the vorti-
ces deflect towards the vortices behind upper cylinder. This phe-



Fig. 6. (a) Close-up view of the triangular mesh around three circular cylinders (T = 2D and L = 2D), (b) Vorticity contours and streamlines of flow past three side-by-side
circular cylinders (T = 2D) at Re = 100, (c) Vorticity contours and streamlines of flow past three side-by-side circular cylinders (T = 2D) at Re = 200, (d) Lift and drag coefficients
of flow past three circular cylinders (T = 2D) at Re = 100, (e) Lift and drag coefficients of flow past three side-by-side circular cylinders (T = 2D) at Re = 200.
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nomena result in a narrow wake pattern behind the upper cylinder
as compared to the lower one. Due to this bifurcation of flip-flop-
ping and deflected wake pattern in the downstream region, the
drag coefficient of central cylinder is marginally higher than that
of upper cylinder but the lower cylinder experiences substantially
lower value of drag coefficient which will increase with the in-
crease in gap spacing between the cylinders. The results for the
three cylinders in side-by-side arrangement are indicated by asso-
ciating a number along with CL and CD. ‘1’ stands for the upper cyl-
inder, ‘2’ stands for the middle cylinder and ‘3’ stands for the lower
cylinder.

Fig. 7a and b presents the vorticity contours and streamlines of
flow past three cylinders in tandem for L = 2D at Re = 100 and 200
respectively at instantaneous non-dimensional time t = 250. It is
observed that at Re = 100 the flow maintains a steady state though
the Reynolds number is much greater than the critical value for
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single cylinder (Re � 49). From the streamline plots for Re = 100, it
is observed that the flow in the gap region between the cylinders is
rather restricted. Also, the shear layer which is separated from the
inside surface of the upstream cylinder reattaches onto the outer
surface of the middle cylinder. The same phenomenon also occurs
between middle cylinder and downstream cylinder. This flow re-
gime has been classified by Zdravkovich (1977) as the steady reat-
tachment. Fig. 7c and d shows the temporal histories of drag and
lift coefficients for flow past three tandem cylinders at Re = 100
and 200 respectively. From Fig. 7c, it can be observed that ampli-
tude of lift coefficient remains almost equal to zero even after suf-
ficient numbers of time-steps. It implies that the unsteady
behaviour initially produced by the artificial numerical perturba-
tion due to round off errors, etc. is gradually dissipated by viscos-
ity. However with increase in Reynolds number (Re = 200), the
flow field between the cylinders (upstream-middle and middle-
downstream) becomes marginally unsteady. Flow behind the
downstream cylinder becomes unsteady and a sparse Karman vor-
tex street is formed. This gap (L = 2D) falls in the critical gap regime
as proposed by Zdravkovich (1977) and therefore the streamline
and vorticity contours and the temporal behaviour of lift and drag
coefficients for Re = 200 case is as per expectation. The results for
the three cylinders in tandem arrangement are indicated by asso-
ciating a number along with CL and CD. ‘1’ stands for the upstream
cylinder, ‘2’ stands for the middle cylinder and ‘3’ stands for the
downstream cylinder.

Table 6 mentions the mean value and amplitude of drag and lift
coefficients for three cylinders at Re = 100 and 200 for side-by-side
and tandem arrangements. It is observed that for side-by-side
arrangements, the mean values of drag coefficient for the upper
cylinder and central cylinders are comparable with later being
marginally higher than the former. But the lower cylinder experi-
ences very low drag coefficients due to the bifurcation of the wake
pattern in the downstream. However, for cylinders in tandem
arrangement, the upstream cylinder experiences higher drag than
the other two cylinders. The drag coefficient for the downstream
cylinder is very low as compared to the other upstream cylinders
due to the sparse Karman vortex street behind it. The negative va-
lue of drag coefficients obtained in the present calculations for
lower cylinder in side-by-side arrangement and for downstream
cylinder in tandem arrangement agrees well with the results of
Meneghini et al. (2001) who proposed that this will change to po-
sitive value once the separation gap increases beyond three times
the diameter of the cylinders. However, the Strouhal number val-
ues are not obtainable for the cylinders with lower transverse
gap (T = 2D) from our results. With flip-flopping wake pattern at
such a low transverse gap, FFT of the lift coefficient does not pro-
duce any distinct dominant frequency. For cylinders in tandem
arrangement, the steady wake pattern obtained at Re = 100 has
no vortex shedding frequency. At Re = 200, due to flip-flopping nat-
ure of wake patterns, any distinct dominant frequency is not ob-
tained from the FFT analysis of the lift coefficient. Therefore no
shedding frequency is mentioned for three cylinders in tandem
arrangement at such a low longitudinal gap between the cylinders.

8.3.2. Case II: side-by-side (T = 5D) and tandem (L = 5D) arrangement
Due to irregularities in the flow patterns in either of the

arrangements (side-by-side or tandem) of three cylinders with
T = 2D and L = 2D, it has been a difficult task to conclude on the
nature of the flow behind the cylinders with such low separation
gaps which lie within critical gap region. In order to obtain a dis-
tinct flow pattern behind the cylinders, numerical simulations
were subsequently performed for the case of T = 5D and L = 5D
for side-by-side and tandem arrangement of three circular cylin-
ders respectively. Distribution of cells in the complete domain is
shown in Fig. 8. The transverse distance between the central cylin-
der and the outer boundary is kept fixed which would produce
comparable transverse blockage ratio so that it will not have much
effect on the flow. Close-up views of the triangular mesh around
three circular cylinders for the two cases are shown in Fig. 9a. In
both the cases, the non-dimensional time step used is 0.0005. In
the present study, the unsteady flow at Re = 100 and 200 are sim-
ulated on a triangular mesh with 21,558 cells and 11,015 nodes for
T = 5D case and with 25,180 cells and 12,840 nodes for L = 5D case
respectively.

Fig. 9b and c presents the vorticity contours and streamlines of
flow past three side-by-side cylinders for T = 5D at Re = 100 and
200 respectively at instantaneous non-dimensional time t = 220.
It is observed that with larger transverse gap (5D) which is well be-
yond the critical gap, three synchronized Karman vortex streets are



Fig. 7. (a) Vorticity contours and streamlines of flow past three circular cylinders in tandem (L = 2D) at Re = 100, (b) Vorticity contours and streamlines of flow past three
circular cylinders in tandem (L = 2D) at Re = 200, (c) Lift and drag coefficients of flow past three circular cylinders (L = 2D) at Re = 100, (d) Lift and drag coefficients of flow past
three circular cylinders in tandem (L = 2D) at Re = 200.

Table 6
Values of flow parameters for flow field around three circular cylinders at Re = 100 and 200 for side-by-side and tandem arrangement.

Parameters Drag coefficient (CD) Lift coefficient (CL)

Reynolds number Re = 100 Re = 200 Re = 100 Re = 200

T = 2D Upper Cylinder 1.72 1.91 0.35 ± 0.3 0.4 ± 0.6
Middle Cylinder 1.86 2.05 0.0 ± 0.4 0.0 ± 0.55
Lower Cylinder �0.58 0.32 0.35 ± 0.3 �0.4 ± 0.5

L = 2D Upstream Cylinder 0.2 0.32 0.0 0.0 ± 0.5
Middle Cylinder 0.08 0.13 0.0 0.0 ± 0.4
Downstream Cylinder �0.4 �0.05 0.0 �0.1 ± 0.22
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formed behind the three cylinders. Fig. 9d and e shows the tempo-
ral histories of drag and lift coefficients. The synchronized variation
of lift and drag coefficients with time also ensures fully periodic
flow with synchronized vortex shedding from the cylinders. It is
also observed that modulation occurs and the observed modula-
tion period is very large as compared to the vortex shedding peri-



Fig. 8. Complete flow domain with three circular cylinders in side-by-side (T = 5D) and tandem (L = 5D) arrangement.

Fig. 9. (a) Close-up view of the triangular mesh around three circular cylinders (T = 5D and L = 5D), (b) Vorticity contours and streamlines of flow past three side-by-side
circular cylinders (T = 5D) at Re = 100, (c) Vorticity contours and streamlines of flow past three side-by-side circular cylinders (T = 5D) at Re = 200, (d) Lift and drag coefficients
of flow past three side-by-side circular cylinders (T = 5D) at Re = 100, (e) Lift and drag coefficients of flow past three side-by-side circular cylinders (T = 5D) at Re = 200.
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od. This observation was also highlighted by Kang (2004) in his
numerical simulation for similar flow configuration. According to
the FFT analyses, the three cylinders shed their vortices with fre-
quencies close to the single cylinder case both at Re = 100 and
200 but the shedding frequency for the two outer cylinders is
slightly smaller than that for the central one. This marginal differ-
ence between the two vortex shedding frequencies obviously
causes the modulation phenomena with a very low modulation
frequency. Thus due to the modulation characteristics, the flow
structure is called modulation synchronized flow pattern. Sumner
et al. (1999) has reported synchronized-unbiased vortex shedding
at similar gap spacing range (T > 3D) in the turbulent regime. Thus,
it is evident that the modulation phenomena in the present case
may be due to the lower Reynolds numbers used for the flow cal-
culations. It is also observed that the mean value of lift coefficient
is positive for upper cylinder, zero for middle cylinder and negative
for lower cylinder. Also, it is observed that the flow parameters
tend towards those for single cylinder for 5D transverse gap. This
is due to the decreased flow interference as the transverse gap be-
tween the cylinders further increases.

Fig. 10a and b presents the vorticity contours and streamlines of
flow past three circular cylinders in tandem for T = 5D at Re = 100
and 200 respectively at instantaneous non-dimensional time
t = 220. When the longitudinal gap between the cylinders is in-
creased to 5D, the flow pattern in the gap region experiences a dis-
tinct change. The phenomenon involving the separation and
reattachment of shear layer from the upstream cylinder to the
immediate downstream cylinder is no more prevalent for the pres-



Fig. 9 (continued)
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ent case. Instead, Karman vortex streets are observed between the
cylinders. From the vorticity contours, it is observed that the vortex
shedding from the downstream cylinder is highly disturbed by the
impingement of the vortex streets emerging from upstream and
middle cylinders. The temporal histories of lift and drag coeffi-
cients are shown in Fig. 10c and d. It can be seen that the synchro-
nization occurs between the impingement flow and vortex
shedding from the downstream cylinder.

The mean value and the amplitude of drag and lift coefficients
and the Strouhal number of the present numerical results are listed
in Table 7. The results of flow past single circular cylinder are also
included in this table for comparison. It can be seen that when the
gap between the cylinders is increased to L = 5D, the flow parame-
ters of upstream cylinder become closer to those of a single cylin-
der. But for the downstream cylinder, the solution difference with
a single cylinder confirms the influence of flow impingement on
the flow field. It is observed that the Strouhal number value re-
mains same for all the cylinders at a particular Reynolds number
in either of the arrangements. This phenomenon agrees well with
the results of Liang et al. (2009).

9. Conclusions

A numerical method has been proposed to solve two dimen-
sional Navier–Stokes equations for incompressible viscous flows.
The solver is based on a cell-centered finite-volume scheme for
unstructured triangular meshes. The algorithm has been used to
study the interference effect of vortices in the laminar flows
involving three cylinders in tandem and side-by-side arrange-
ments at Re = 100 and 200. The algorithm is first validated for lam-
inar flow past a single cylinder and two cylinders in side-by-side
arrangements at different transverse gaps between the cylinders.
The results show good qualitative agreement with the computa-
tional results from other researchers. The present scheme demon-
strates good convergence characteristics and reasonably good
accuracy as is evident from comparison of results with available
literature. The present CFRUNS solver can be considered to be as
good as other reported unstructured grid solvers. In the present
study, the flow was assumed to be two-dimensional and laminar
in all possible arrangement of cylinders. Due to the augmented
characteristic length when the cylinders were in close proximity,
three-dimensional phenomena might emerge over the ranges of
relatively higher Reynolds number and small gap spacings.

For the case of flows past three cylinders in tandem, it is ob-
served that the downstream cylinder which lies in the wake of
the upper cylinder experiences very large unsteady forces that
can give rise to wake-induced flutter. This phenomenon is more
likely to occur with less longitudinal gap between the cylinders.
With relatively lower longitudinal gap (L = 2D), steady wake pat-
tern was obtained at Re = 100 but sparse Karman street was ob-
served at Re = 200. In this case, any distinct dominant shedding
frequencies were not reported by the FFT analyses of the lift coef-
ficients. When the longitudinal gap is increased (L = 5D), there
were no flow separation or reattachment of shear layer from the



Fig. 10. (a) Vorticity contours and streamlines of flow past three circular cylinders in tandem (L = 5D) at Re = 100, (b) Vorticity contours and streamlines of flow past three
circular cylinders in tandem (L = 5D) at Re = 200, (c) Lift and drag coefficients of flow past three circular cylinders in tandem (L = 5D) at Re = 100, (d) Lift and drag coefficients
of flow past three circular cylinders in tandem (L = 5D) at Re = 200.

Table 7
Values of flow parameters for flow field around three circular cylinders at Re = 100 and 200 for side-by-side and tandem arrangement.

Parameters Drag coefficient (CD) Lift coefficient (CL) Strouhal number (St)

Reynolds number Re = 100 Re = 200 Re = 100 Re = 200 Re = 100 Re = 200

Single Circular cylinder 1.352 ± 0.01 1.32 ± 0.05 0.0 ± 0.278 0.0 ± 0.602 0.161 0.192
T = 5D Upper Cylinder 1.45 ± 0.02 1.61 ± 0.07 0.0 ± 0.35 0.0 ± 0.78 0.1766 0.1922

Middle Cylinder 1.36 ± 0.01 1.40 ± 0.05 0.0 ± 0.32 0.0 ± 0.66 0.1796 0.2019
Lower Cylinder 1.45 ± 0.02 1.60 ± 0.07 0.0 ± 0.35 0.0 ± 0.73 0.1766 0.1922

L = 5D Upstream Cylinder 1.64 ± 0.02 1.29 ± 0.05 0.0 ± 0.35 0.0 ± 0.6 0.1452 0.1766
Middle Cylinder 0.62 ± 0.5 0.46 ± 0.165 0.0 ± 1.21 0.0 ± 1.37 0.1452 0.1766
Downstream Cylinder 0.25 ± 0.008 0.12 ± 0.044 0.0 ± 0.39 0.0 ± 0.45 0.1452 0.1766
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upstream cylinder to the immediate downstream cylinder. Instead,
Karman vortex streets were observed between the cylinders. How-
ever, the vortex shedding from the downstream cylinder was
highly disturbed by the impingement of the upstream vortex
streets emerging from upstream and middle cylinders. The vortex
shedding frequency strongly depended on the gap spacing. The
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FFT analyses of the lift coefficients show distinct identical vortex
shedding frequencies for all the cylinders.

For the case of flows past two and three cylinders in side-by-
side arrangement at less transverse gap between the cylinders, it
was observed that the complex vortex interactions are intense in
the near wake region. Depending on the gap spacings, different
wake patterns like in-phase or anti-phase synchronized wake pat-
terns (two-cylinders with T = 3D), deflected wake patterns (two-
cylinders with T = 1.5D), modulated synchronized wake patterns
(three-cylinders with T = 5D) and bifurcated parallel flip-flopping
wake patterns (three-cylinders with T = 2D) were observed.

It has been found in general that flows involving two and three
cylinders show a strong dependence on the Reynolds number as
well as gap spacings between the cylinders with the later playing
a dominant role as compared with the flows past a single cylinder.
Similar to the flow past a single circular cylinder, in case of flows
past two- and three-cylinder arrays, the Strouhal number tends
to increase as Reynolds number increases which implies that there
is a more rapid vortex shedding. It is observed that the interference
effect of cylinders due to increase in Reynolds number is more sen-
sitive in case of tandem arrangement as compared to side-by-side
arrangement. In tandem arrangement of cylinders, the flow field
behind the downstream cylinder develops from steady state into
an unsteady state as Reynolds number increases. It has also been
observed that in case of multi-cylinder arrangement, the Strouhal
number values for each cylinder remain same for all the cylinders
at a particular Reynolds number. In general, the vortex shedding
frequencies for tandem cylinders were found to be lower than
the side-by-side cylinders.
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